Delaunay Triangulations of Points on Circles

نویسندگان

  • Vincent Despr'e
  • Olivier Devillers
  • Hugo Parlier
  • Jean-Marc Schlenker
چکیده

Delaunay triangulations of a point set in the Euclidean plane are ubiquitous in a number of computational sciences, including computational geometry. Delaunay triangulations are not well defined as soon as 4 or more points are concyclic but since it is not a generic situation, this difficulty is usually handled by using a (symbolic or explicit) perturbation. As an alternative, we propose to define a canonical triangulation for a set of concyclic points by using a max-min angle characterization of Delaunay triangulations. This point of view leads to a well defined and unique triangulation as long as there are no symmetric quadruples of points. This unique triangulation can be computed in quasi-linear time by a very simple algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Variational Principle for Weighted Delaunay Triangulations and Hyperideal Polyhedra

We use a variational principle to prove an existence and uniqueness theorem for planar weighted Delaunay triangulations (with non-intersecting site-circles) with prescribed combinatorial type and circle intersection angles. Such weighted Delaunay triangulations may be interpreted as images of hyperbolic polyhedra with one vertex on and the remaining vertices beyond the infinite boundary of hype...

متن کامل

Robust and Efficient Delaunay Triangulations of Points on Or Close to a Sphere

We propose two ways to compute the Delaunay triangulation of points on a sphere, or of rounded points close to a sphere, both based on the classic incremental algorithm initially designed for the plane. We use the so-called space of circles as mathematical background for this work. We present a fully robust implementation built upon existing generic algorithms provided by the cgal library. The ...

متن کامل

On the Number of Higher Order Delaunay Triangulations

Higher order Delaunay triangulations are a generalization of the Delaunay triangulation which provides a class of well-shaped triangulations, over which extra criteria can be optimized. A triangulation is order-k Delaunay if the circumcircle of each triangle of the triangulation contains at most k points. In this paper we study lower and upper bounds on the number of higher order Delaunay trian...

متن کامل

Triangulations of Line Segment Sets in the Plane

Given a set S of line segments in the plane, we introduce a new family of partitions of the convex hull of S called segment triangulations of S. The set of faces of such a triangulation is a maximal set of disjoint triangles that cut S at, and only at, their vertices. Surprisingly, several properties of point set triangulations extend to segment triangulations. Thus, the number of their faces i...

متن کامل

Constructing Intrinsic Delaunay Triangulations of Submanifolds

We describe an algorithm to construct an intrinsic Delaunay triangulation of a smooth closed submanifold of Euclidean space. Using results established in a companion paper on the stability of Delaunay triangulations on δ-generic point sets, we establish sampling criteria which ensure that the intrinsic Delaunay complex coincides with the restricted Delaunay complex and also with the recently in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018